2.1.1 Übersichtsraster Unterrichtsvorhaben

Unterrichtsvorhaben der Einführungsphase			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Physik und Straßenverkehr	Mechanik	E7 Arbeits- und Denkweisen	
Wie lassen sich Bewegungen vermessen und	Kräfte und Bewegungen	K4 Argumentation	
analysieren?	Energie und Impuls	E5 Auswertung	
Zeitbedarf: 42 Ustd.		E6 Modelle	
		UF2 Auswahl	
Auf dem Weg in den Weltraum	Mechanik	UF4 Vernetzung	
Wie kommt man zu physikalischen	Gravitation	E3 Hypothesen	
Erkenntnissen über unser Sonnensystem?	Kräfte und Bewegungen	E6 Modelle	
Zeitbedarf: 28 Ustd.	Energie und Impuls	E7 Arbeits- und Denkweisen	
Schall	Mechanik	E2 Wahrnehmung und Messung	
Wie lässt sich Schall physikalisch untersuchen?	Schwingungen und Wellen	UF1 Wiedergabe	
Zeitbedarf: 10 Ustd.	Kräfte und Bewegungen	K1 Dokumentation	
	Energie und Impuls		
Summe Einführungsphase: 80 Stunden			

Unterrichtsvorhaben der Qualifikationsphase (Q1) – GRUNDKURS				
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte		
Energieversorgung und Transport mit	Elektrodynamik	UF2 Auswahl		
Generatoren und Transformatoren	Spannung und elektrische Energie	UF4 Vernetzung		
Wie kann elektrische Energie gewonnen, verteilt	• Induktion	E2 Wahrnehmung und Messung		
und bereitgestellt werden?	Spannungswandlung	E5 Auswertung		
Zeitbedarf: 18 Ustd.	- oparmangowandiang	E6 Modelle		
		K3 Präsentation		
		B1 Kriterien		
Wirbelströme im Alltag	Elektrodynamik	UF4 Vernetzung		
Wie kann man Wirbelströme technisch nutzen?	Induktion	E5 Auswertung		
Zeitbedarf: 4 Ustd.		B1 Kriterien		
Erforschung des Photons	Quantenobjekte	E2 Wahrnehmung und Messung		
Wie kann das Verhalten von Licht beschrieben	Photon (Wellenaspekt)	E5 Auswertung		
und erklärt werden?		K3 Präsentation		
Zeitbedarf: 14 Ustd.				
Erforschung des Elektrons	Quantenobjekte	UF1 Wiedergabe		
Wie können physikalische Eigenschaften wie die	Elektron (Teilchenaspekt)	UF3 Systematisierung		
Ladung und die Masse eines Elektrons		E5 Auswertung		
gemessen werden?		E6 Modelle		
Zeitbedarf: 15 Ustd.				
Photonen und Elektronen als Quantenobjekte	Quantenobjekte	E6 Modelle		
Kann das Verhalten von Elektronen und	 Elektron und Photon (Teilchenaspekt, 	E7 Arbeits- und Denkweisen		
Photonen durch ein gemeinsames Modell	Wellenaspekt)	K4 Argumentation		
beschrieben werden?	 Quantenobjekte und ihre Eigenschaften 	B4 Möglichkeiten und Grenzen		
Zeitbedarf: 5 Ustd.				
Summe Qualifikationsphase (Q1) – GRUNDKURS: 56 Stunden				

Unterrichtsvorhaben der Qualifikationsphase (Q2) – GRUNDKURS			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Erforschung des Mikro- und Makrokosmos	Strahlung und Materie	UF1 Wiedergabe	
Wie gewinnt man Informationen zum Aufbau der	Energiequantelung der Atomhülle	E5 Auswertung	
Materie?	Spektrum der elektromagnetischen Strahlung	E2 Wahrnehmung und Messung	
Zeitbedarf: 13 Ustd.			
Mensch und Strahlung	Strahlung und Materie	UF1 Wiedergabe	
Wie wirkt Strahlung auf den Menschen?	Kernumwandlungen	B3 Werte und Normen	
Zeitbedarf: 9 Ustd.	Ionisierende Strahlung	B4 Möglichkeiten und Grenzen	
	 Spektrum der elektromagnetischen Strahlung 		
Forschung am CERN und DESY	Strahlung und Materie	UF3 Systematisierung	
Was sind die kleinsten Bausteine der Materie?	Standardmodell der Elementarteilchen	E6 Modelle	
Zeitbedarf: 6 Ustd.			
Navigationssysteme	Relativität von Raum und Zeit	UF1 Wiedergabe	
Welchen Einfluss hat Bewegung auf den Ablauf	Konstanz der Lichtgeschwindigkeit	E6 Modelle	
der Zeit?	Zeitdilatation		
Zeitbedarf: 5 Ustd.			
Teilchenbeschleuniger	Relativität von Raum und Zeit	UF4 Vernetzung	
Ist die Masse bewegter Teilchen konstant?	Veränderlichkeit der Masse	B1 Kriterien	
Zeitbedarf: 6 Ustd.	Energie-Masse Äquivalenz		
Das heutige Weltbild	Relativität von Raum und Zeit	E7 Arbeits- und Denkweisen	
Welchen Beitrag liefert die Relativitätstheorie zur	Konstanz der Lichtgeschwindigkeit	K3 Präsentation	
Erklärung unserer Welt?	Zeitdilatation		
Zeitbedarf: 2 Ustd.	Veränderlichkeit der Masse		
	Energie-Masse Äquivalenz		
Summe Qualifikationsphase (Q2) – GRUNDKURS	: 41 Stunden		

2.1.2 Konkretisierte Unterrichtsvorhaben

2.1.2.1 Einführungsphase

Inhaltsfeld: Mechanik

Kontext: Physik und Straßenverkehr

Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren?

Inhaltliche Schwerpunkte: Kräfte und Bewegungen, Energie und Impuls **Kompetenzschwerpunkte:** Schülerinnen und Schüler können ...

- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen
- (K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren.
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (UF2)zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Beschreibung von Bewegungen im Alltag und Straßenverkehr Aristoteles vs. Galilei (2 Ustd.)	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten (K2, K4).	Textauszüge aus Galileis Discorsi zur Mechanik und zu den Fallgesetzen Handexperimente zur qualitativen Beobachtung von Fallbewegungen (z. B. Stahlkugel, glattes bzw. zur Kugel zusammengedrücktes Papier, evakuiertes Fallrohr mit Feder und Metallstück)	Einstieg über Verkehrssituationen und – sicherheit. Analyse alltäglicher Bewegungsabläufe, Analyse von Kraftwirkungen auf reibungsfreie Körper Vorstellungen zur Trägheit und zur Fallbewegung, Diskussion von Alltagsvorstellungen und physikalischen Konzepten Vergleich der Vorstellungen von Aristoteles und Galilei zur Bewegung, Folgerungen für Vergleichbarkeit von sportlichen Leistungen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Beschreibung und Analyse von linearen Bewegungen (16 Ustd.)	unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung	Digitale Videoanalyse (z.B. mit VIANA, Tracker) von Bewegungen im Sport (Fahrradfahrt o. anderes Fahrzeug, Sprint, Flug von Bällen)	Einführung in die Verwendung von digitaler Videoanalyse (Auswertung von Videosequenzen, Darstellung der Messdaten in Tabellen und Diagrammen mithilfe einer Software zur Tabellenkalkulation)
(bzw. Vektoraddition (E1), planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge		Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung)
	(u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1),		Erarbeitung der Bewegungsgesetze der gleichförmigen Bewegung
	stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. <i>t-s</i> - und <i>t-v</i> -Diagramme,	Luftkissenfahrbahn mit digitaler Messwerterfassung:	Untersuchung gleichmäßig beschleunigter Bewegungen im Labor
	Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3),	Messreihe zur gleichmäßig beschleunigten Bewegung	Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung
	erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5), bestimmen mechanische Größen mit mathematischen		Erstellung von t-s- und t-v-Diagrammen (auch mithilfe digitaler Hilfsmittel), die Interpretation und Auswertung derartiger Diagramme sollte intensiv geübt werden.
	Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6),	Freier Fall und Bewegung auf einer schiefen Ebene	Planung von Experimenten durch die Schüler (Auswertung mithilfe der Videoanalyse)
		einer schiefen Ebene	Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen, auch die Argumentation von Galilei ist besonders gut geeignet, um Argumentationsmuster in Physik explizit zu besprechen
		Wurfbewegungen Basketball, Korbwurf, Abstoß beim Fußball, günstigster Winkel	Wesentlich: Erarbeitung des Superpositionsprinzips (Komponentenzerlegung und Addition vektorieller Größen)
		i dispail, guristigster vvilikel	Herleitung der Gleichung für die Bahnkurve nur optional

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Newton'sche Gesetze, Kräfte und Bewegung (12 Ustd.)	berechnen mithilfe des Newton'schen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6), entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4), reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4), geben Kriterien (u.a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1),	Luftkissenfahrbahn mit digitaler Messwerterfassung: Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft Protokolle: Funktionen und Anforderungen	Kennzeichen von Laborexperimenten im Vergleich zu natürlichen Vorgängen besprechen, Ausschalten bzw. Kontrolle bzw. Vernachlässigen von Störungen Erarbeitung des Newton'schen Bewegungsgesetzes Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I. Berechnung von Kräften und Beschleunigungen beim Kugelstoßen, bei Ballsportarten, Einfluss von Reibungskräften

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Energie und Leistung Impuls (12 Ustd.)	erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit, Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4), analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1), verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1), begründen argumentativ Sachaussagen, Behauptungen und Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnisse oder andere objektive Daten heran (K4), bewerten begründet die Darstellung bekannter mechanischer und anderer physikalischer Phänomene in verschiedenen Medien (Printmedien, Filme, Internet) bezüglich ihrer Relevanz und Richtigkeit (K2, K4),	Einsatz des GTR zur Bestimmung des Integrals Fadenpendel (Schaukel) Sportvideos Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zu elastischen und unelastischen Stößen	Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den Newton'schen Gesetzen und der Definition der Arbeit Energieerhaltung an Beispielen (Pendel, Achterbahn, Halfpipe) erarbeiten und für Berechnungen nutzen Energetische Analysen in verschiedenen Sportarten (Hochsprung, Turmspringen, Turnen, Stabhochsprung, Bobfahren, Skisprung) Begriff des Impulses und Impuls als Erhaltungsgröße Elastischer und inelastischer Stoß auch an anschaulichen Beispielen aus dem Sport (z.B. Impulserhaltung bei Ballsportarten, Kopfball beim Fußball, Kampfsport) Hinweis: Erweiterung des Impulsbegriffs am Ende des Kontextes "Auf dem Weg in den Weltraum"
Impuls und Impulserhaltung, Rückstoß (6 Ustd.)	verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z.B. Raumfahrt, Mobilität) und beziehen Stellung dazu (B2, B3).	Skateboards und Medizinball Wasserrakete Raketentriebwerke für Modellraketen Recherchen zu aktuellen Projekten von ESA und DLR, auch zur Finanzierung	Impuls und Rückstoß Bewegung einer Rakete im luftleeren Raum Untersuchungen mit einer Wasserrakete, Simulation des Fluges einer Rakete in einer Excel-Tabelle Debatte über wissenschaftlichen Wert sowie Kosten und Nutzen ausgewählter Programme
48 Ustd.	Summe		

Kontext: Auf dem Weg in den Weltraum

Leitfrage: Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem? Inhaltliche Schwerpunkte: Gravitation, Kräfte und Bewegungen, Energie und Impuls

- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Aristotelisches Weltbild,	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang	Arbeit mit dem Lehrbuch: Einstieg über Film zur Entwicklung des Raketenbaus und der Weltraumfahrt	
Kopernikanische Wende	vom Mittelalter zur Neuzeit dar (UF3, E7),	heliozentrisches Planetenmodell	Besuch in einer Sternwarte, Planetarium Bochum
(3 Ustd.)			Beobachtungen am Himmel
			Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen
Planetenbewegunge	ermitteln mithilfe der Kepler'schen Gesetze und des	Drehbare Sternkarte und aktuelle	Orientierung am Himmel
n und Kepler'sche Gesetze	Gravitationsgesetzes astronomische Größen (E6), beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Wille ten von (57,700)	astronomische Tabellen Animationen zur Darstellung der Planetenbewegungen	Beobachtungsaufgabe: Finden von Planeten am
			Nachthimmel
(5 Ustd.)			Tycho Brahes Messungen, Keplers Schlussfolgerungen
	Newton initiiert wurden (E7, B3).		Benutzung geeigneter Apps
Newton'sches Gravitationsgesetz, Gravitationsfeld	beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6),	Arbeit mit dem Lehrbuch, Recherche im Internet	Newton'sches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Kepler'schen Gesetze
(6 Ustd.)			Newton'sche "Mondrechnung"
			Anwendung des Newton'schen Gravitationsgesetzes und der Kepler'schen Gesetze zur Berechnung von Satellitenbahnen
			Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift "Kraft auf Probekörper"

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Kreisbewegungen (8 Ustd.)	analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6),	Messung der Zentralkraft An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der Gleichung für die Zentripetalkraft als zwei wesentliche Erkenntnismethoden der Physik bearbeitet werden.	Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung: Herausstellen der Notwendigkeit der Konstanthaltung der restlichen Größen bei der experimentellen Bestimmung einer von mehreren anderen Größen abhängigen physikalischen Größe (hier bei der Bestimmung der Zentripetalkraft in Abhängigkeit von der Masse des rotierenden Körpers) Ergänzend: Deduktion der Formel für die Zentripetalbeschleunigung Massenbestimmungen im Planetensystem, Fluchtgeschwindigkeiten Bahnen von Satelliten und Planeten
22 Ustd.	Summe		,

Kontext: Schall

Leitfrage: Wie lässt sich Schall physikalisch untersuchen?

Inhaltliche Schwerpunkte: Schwingungen und Wellen, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern,

(K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Entstehung und Ausbreitung von Schall (4 Ustd.)	erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6),	Stimmgabeln, Lautsprecher, Frequenzgenerator, Frequenzmessgerät, Schallpegelmesser, rußgeschwärzte Glasplatte, Schreibstimmgabel, Klingel und Vakuumglocke	Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen und Wellen: Frequenz (Periode) und Amplitude mittels der Höreindrücke des Menschen
Modelle der Wellenausbreitung (4 Ustd.)	beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4),	Lange Schraubenfeder, Wellenwanne	Entstehung von Longitudinal- und Transversalwellen Ausbreitungsmedium, Möglichkeit der Ausbreitung longitudinaler. bzw. transversaler Schallwellen in Gasen, Flüssigkeiten und festen Körpern
Erzwungene Schwingungen und Resonanz (2 Ustd.)	erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1).	Stimmgabeln	Resonanz (auch Tacoma-Bridge, Millennium- Bridge) Resonanzkörper von Musikinstrumenten
10 Ustd.	Summe		

2.1.2.2 Qualifikationsphase: Grundkurs

Inhaltsfeld: Elektrodynamik (GK)

Kontext: Erforschung des Elektrons

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Inhaltliche Schwerpunkte: Elektron (Teilchenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Elementarladung (5 Ustd.)	erläutern anhand einer vereinfachten Version des Millikanversuchs die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung (UF1, E5), untersuchen, ergänzend zum Realexperiment, Computersimulationen zum Verhalten von Quantenobjekten (E6).	schwebender Wattebausch Millikanversuch Schwebefeldmethode (keine Stokes 'sche Reibung) Auch als Simulation möglich	Begriff des elektrischen Feldes in Analogie zum Gravitationsfeld besprechen, Definition der Feldstärke über die Kraft auf einen Probekörper, in diesem Fall die Ladung Homogenes elektrisches Feld im Plattenkondensator, Zusammenhangs zwischen Feldstärke im Plattenkondensator, Spannung und Abstand der Kondensatorplatten vorgeben und durch Auseinanderziehen der geladenen Platten demonstrieren

Elektronenmasse (7 Ustd.)	beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern deren Definitionsgleichungen. (UF2, UF1), bestimmen die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer elektrischen Spannung (UF2), modellieren Vorgänge im Fadenstrahlrohr (Energie der Elektronen, Lorentzkraft) mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her, die sich experimentell überprüfen lassen, und ermitteln die Elektronenmasse (E6, E3, E5),	elm-Bestimmung mit dem Fadenstrahlrohr und Helmholtzspulenpaar auch Ablenkung des Strahls mit Permanentmagneten (Lorentzkraft) evtl. Stromwaage bei hinreichend zur Verfügung stehender Zeit) Messung der Stärke von Magnetfeldern mit der Hallsonde	Einführung der 3-Finger-Regel und Angabe der Gleichung für die Lorentzkraft: Einführung des Begriffs des magnetischen Feldes (in Analogie zu den beiden anderen Feldern durch Kraft auf Probekörper, in diesem Fall bewegte Ladung oder stromdurchflossener Leiter) und des Zusammenhangs zwischen magnetischer Kraft, Leiterlänge und Stromstärke. Vertiefung des Zusammenhangs zwischen Spannung, Ladung und Überführungsarbeit am Beispiel Elektronenkanone.
12 Ustd.	Summe		

Kontext: Energieversorgung und Transport mit Generatoren und Transformatoren

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Spannung und elektrische Energie, Induktion, Spannungswandlung

- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Wandlung von mechanischer in elektrische Energie:	erläutern am Beispiel der <i>Leiterschaukel</i> das Auftreten einer Induktionsspannung durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (UF1, E6),	bewegter Leiter im (homogenen) Magnetfeld - "Leiterschaukelversuch"	Definition der Spannung und Erläuterung anhand von Beispielen für Energieumwandlungsprozesse bei Ladungstransporten, Anwendungsbeispiele.
Elektromagnetische Induktion Induktionsspannung	definieren die Spannung als Verhältnis von Energie und Ladung und bestimmen damit Energien bei elektrischen Leitungsvorgängen (UF2),	Messung von Spannungen mit diversen Spannungsmessgeräten (nicht nur an der Leiterschaukel)	Das Entstehen einer Induktionsspannung bei bewegtem Leiter im Magnetfeld wird mit Hilfe der Lorentzkraft erklärt, eine Beziehung zwischen Induktionsspannung, Leitergeschwindigkeit und
(5 Ustd.)	bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).	Gedankenexperimente zur Überführungsarbeit, die an einer Ladung verrichtet wird. Deduktive Herleitung der Beziehung zwischen <i>U</i> , <i>v</i> und <i>B</i> .	Stärke des Magnetfeldes wird (deduktiv) hergeleitet. Die an der Leiterschaukel registrierten (zeitabhängigen) Induktionsspannungen werden mit Hilfe der hergeleiteten Beziehung auf das Zeit- Geschwindigkeit-Gesetz des bewegten Leiters zurückgeführt.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Technisch praktikable Generatoren:	recherchieren bei vorgegebenen Fragestellungen historische Vorstellungen und Experimente zu Induktionserscheinungen (K2),	Internetquellen, Lehrbücher, Firmeninformationen, Filme und Applets zum Generatorprinzip	Hier bietet es sich an, arbeitsteilige Präsentationen auch unter Einbezug von Realexperimenten anfertigen zu lassen.
Erzeugung sinusförmiger Wechselspannungen (4 Ustd.)	erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3),	Experimente mit drehenden Leiterschleifen in (näherungsweise homogenen) Magnetfeldern, Wechselstromgeneratoren	
	erläutern das Entstehen sinusförmiger Wechselspannungen in Generatoren (E2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),	Messung und Registrierung von Induktionsspannungen mit Oszilloskop und digitalem Messwerterfassungssystem	Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der senkrecht vom Magnetfeld durchsetzten Fläche wird "deduktiv" erschlossen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Nutzbarmachung elektrischer Energie durch "Transformator (5 Ustd.)	erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3), ermitteln die Übersetzungsverhältnisse von Spannung und Stromstärke beim Transformator (UF1, UF2). geben Parameter von Transformatoren zur gezielten Veränderung einer elektrischen Wechselspannung an (E4), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),	diverse "Netzteile" von Elektro-Kleingeräten (mit klassischem Transformator) Internetquellen, Lehrbücher, Firmeninformationen Demo-Aufbautransformator mit geeigneten Messgeräten ruhende Induktionsspule in wechselstromdurchflossener Feldspule - mit Messwerterfassungssystem zur zeitaufgelösten Registrierung der Induktionsspannung und des zeitlichen Verlaufs der Stärke des magnetischen Feldes	Der Transformator wird eingeführt und die Übersetzungsverhältnisse der Spannungen experimentell ermittelt. Dies kann auch durch einen Schülervortrag erfolgen (experimentell und medial gestützt). Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der Stärke des magnetischen Feldes wird experimentell im Lehrerversuch erschlossen. Die registrierten Messdiagramme werden von den SuS eigenständig ausgewertet.
			15

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Energieerhaltung Ohm'sche "Verluste" (4 Ustd.)	verwenden ein physikalisches Modellexperiment zu Freileitungen, um technologische Prinzipien der Bereitstellung und Weiterleitung von elektrischer Energie zu demonstrieren und zu erklären (K3), bewerten die Notwendigkeit eines geeigneten Transformierens der Wechselspannung für die effektive Übertragung elektrischer Energie über große Entfernungen (B1), zeigen den Einfluss und die Anwendung physikalischer Grundlagen in Lebenswelt und Technik am Beispiel der Bereitstellung und Weiterleitung elektrischer Energie auf (UF4), beurteilen Vor- und Nachteile verschiedener Möglichkeiten zur Übertragung elektrischer Energie über große Entfernungen (B2, B1, B4).	Modellexperiment (z.B. mit Hilfe von Aufbautransformatoren) zur Energieübertragung und zur Bestimmung der "Ohm'schen Verluste" bei der Übertragung elektrischer Energie bei unterschiedlich hohen Spannungen	Hier bietet sich ein arbeitsteiliges Gruppenpuzzle an, in dem Modellexperimente einbezogen werden.
18 Ustd.	Summe		

Kontext: Wirbelströme im Alltag

Leitfrage: Wie kann man Wirbelströme technisch nutzen?

Inhaltliche Schwerpunkte: Induktion

- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Lenz'sche Regel (4 Ustd.)	erläutern anhand des <i>Thomson'schen Ringversuchs</i> die Lenz'sche Regel (E5, UF4), bewerten bei technischen Prozessen das Auftreten erwünschter bzw. nicht erwünschter Wirbelströme (B1),	Freihandexperiment: Untersuchung der Relativbewegung eines aufgehängten Metallrings und eines starken Stabmagneten	Ausgehend von kognitiven Konflikten bei den Ringversuchen wird die Lenz´sche Regel erarbeitet
		Thomson'scher Ringversuch diverse technische und spielerische Anwendungen, z.B. Dämpfungselement an einer Präzisionswaage, Wirbelstrombremse, "fallender Magnet" im Alu-Rohr.	Erarbeitung von Anwendungsbeispielen zur Lenz'schen Regel (z.B. Wirbelstrombremse bei Fahrzeugen oder an der Kreissäge)
4 Ustd.	Summe		

Inhaltsfeld: Quantenobjekte (GK)

Kontext: Erforschung des Photons

Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden?

Inhaltliche Schwerpunkte: Photon (Wellenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Beugung und Interferenz Lichtwellenläng e, Lichtfrequenz, Kreiswellen, ebene Wellen, Beugung, Brechung (7 Ustd.)	veranschaulichen mithilfe der Wellenwanne qualitativ unter Verwendung von Fachbegriffen auf der Grundlage des Huygens'schen Prinzips Kreiswellen, ebene Wellen sowie die Phänomene Beugung, Interferenz, Reflexion und Brechung (K3), bestimmen Wellenlängen und Frequenzen von Licht mit Doppelspalt und Gitter (E5),	Doppelspalt und Gitter, Wellenwanne quantitative Experimente mit Laserlicht	Ausgangspunkt: Beugung von Laserlicht Modellbildung mit Hilfe der Wellenwanne (ggf. als Schülerpräsentation) Bestimmung der Wellenlängen von Licht mit Doppelspalt und Gitter Sehr schön sichtbare Beugungs- phänomene finden sich vielfach bei Meereswellen (s. Google-Earth)

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Quantelung der Energie von Licht, Austrittsarbeit (7 Ustd.)	demonstrieren anhand eines Experiments zum Photoeffekt den Quantencharakter von Licht und bestimmen den Zusammenhang von Energie, Wellenlänge und Frequenz von Photonen sowie die Austrittsarbeit der Elektronen (E5, E2),	Photoeffekt Hallwachsversuch Vakuumphotozelle	Roter Faden: Von Hallwachs bis Elektronenbeugung Bestimmung des Planck'schen Wirkungsquantums und der Austrittsarbeit Hinweis: Formel für die max. kinetische Energie der Photoelektronen wird zunächst vorgegeben. Der Zusammenhang zwischen Spannung, Ladung und Überführungsarbeit wird ebenfalls vorgegeben und nur plausibel gemacht. Er muss an dieser Stelle nicht grundlegend hergeleitet werden
Streuung von Elektronen an Festkörpern, de Broglie- Wellenlänge (3 Ustd.)	erläutern die Aussage der de Broglie- Hypothese, wenden diese zur Erklärung des Beugungsbildes beim Elektronenbeugungsexperiment an und bestimmen die Wellenlänge der Elektronen (UF1, UF2, E4).	Experiment zur Elektronenbeugung an polykristallinem Graphit	Veranschaulichung der Bragg- Bedingung analog zur Gitterbeugung
17 Ustd.	Summe		

Kontext: Photonen und Elektronen als Quantenobjekte

Leitfrage: Kann das Verhalten von Elektronen und Photonen durch ein gemeinsames Modell beschrieben werden? Inhaltliche Schwerpunkte: Elektron und Photon (Teilchenaspekt, Wellenaspekt), Quantenobjekte und ihre Eigenschaften

- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.
- (K4) sich mit anderen über physikalische Sachverhalte und Erkenntnisse kritisch-konstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Licht und Materie (5 Ustd.)	ht und Materie erläutern am Beispiel der Quantenobjekte Elektron Computersimulation	Doppelspalt	Reflexion der Bedeutung der Experimente für d Entwicklung der Quantenphysik
	verdeutlichen die Wahrscheinlichkeitsinterpretation für Quantenobjekte unter Verwendung geeigneter Darstellungen (Graphiken, Simulationsprogramme) (K3).		
	zeigen an Beispielen die Grenzen und Gültigkeitsbereiche von Wellen- und Teilchenmodellen für Licht und Elektronen auf (B4, K4),		
	beschreiben und diskutieren die Kontroverse um die Kopenhagener Deutung und den Welle-Teilchen- Dualismus (B4, K4).		

5 Ustd. Summe

Inhaltsfeld: Strahlung und Materie (GK)

Kontext: Erforschung des Mikro- und Makrokosmos

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Energiequantelung der Atomhülle, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kern-Hülle- Modell (2 Ustd.)	erläutern, vergleichen und beurteilen Modelle zur Struktur von Atomen und Materiebausteinen (E6, UF3, B4),	Literaturrecherche, Schulbuch	Ausgewählte Beispiele für Atommodelle
Energieniveaus der Atomhülle (2 Ustd.)	erklären die Energie absorbierter und emittierter Photonen mit den unterschiedlichen Energieniveaus in der Atomhülle (UF1, E6),	Erzeugung von Linienspektren mithilfe von Gasentladungslampen	Deutung der Linienspektren

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Quantenhafte Emission und Absorption von Photonen (3 Ustd.)	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Franck-Hertz-Versuch	Es kann das Bohr'sche Atommodell angesprochen werden (ohne Rechnungen)
Röntgenstrahlun g (3 Ustd.)	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Aufnahme von Röntgenspektren (kann mit interaktiven Bildschirmexperimenten (IBE) oder Lehrbuch geschehen, falls keine Schulröntgeneinrichtung vorhanden ist)	Im Zuge der "Elemente der Quantenphysik" kann die Röntgenstrahlung bereits als Umkehrung des Photoeffekts bearbeitet werden Mögliche Ergänzungen: Bremsspektrum mit h-Bestimmung / Bragg-Reflexion
Sternspektren und Fraunhoferlinien (3 Ustd.)	interpretieren Spektraltafeln des Sonnenspektrums im Hinblick auf die in der Sonnen- und Erdatmosphäre vorhandenen Stoffe (K3, K1), erklären Sternspektren und Fraunhoferlinien (UF1, E5, K2), stellen dar, wie mit spektroskopischen Methoden Informationen über die Entstehung und den Aufbau des Weltalls gewonnen werden können (E2, K1),	Flammenfärbung Darstellung des Sonnenspektrums mit seinen Fraunhoferlinien Spektralanalyse	u. a. Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung)
13 Ustd.	Summe		

Kontext: Mensch und Strahlung

Leitfrage: Wie wirkt Strahlung auf den Menschen?

Inhaltliche Schwerpunkte: Kernumwandlungen, Ionisierende Strahlung, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(B3) an Beispielen von Konfliktsituationen mit physikalisch-technischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und bewerten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Strahlungsarten (2 Ustd.)	unterscheiden α-, β-, γ-Strahlung und Röntgenstrahlung sowie Neutronen- und Schwerionenstrahlung (UF3), erläutern den Nachweis unterschiedlicher Arten ionisierender Strahlung mithilfe von Absorptionsexperimenten (E4, E5), bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kernund Elementarteilchenphysik (B1, B3),	Absorptionsexperimente zu α-, β-, γ-Strahlung	Wiederholung und Vertiefung aus der Sek. I
Elementumwandl ung (1 Ustd.)	erläutern den Begriff Radioaktivität und beschreiben zugehörige Kern- umwandlungsprozesse (UF1, K1),	Nuklidkarte	

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Detektoren (3 Ustd.)	erläutern den Aufbau und die Funktionsweise von Nachweisgeräten für ionisierende Strahlung (<i>Geiger-Müller-Zählrohr</i>) und bestimmen Halbwertszeiten und Zählraten (UF1, E2),	Geiger-Müller-Zählrohr	An dieser Stelle können Hinweise auf Halbleiterdetektoren gegeben werden.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Biologische Wirkung ionisierender Strahlung und Energieaufnahme im menschlichen Gewebe Dosimetrie	beschreiben Wirkungen von ionisierender und elektromagnetischer Strahlung auf Materie und lebende Organismen (UF1), bereiten Informationen über wesentliche biologisch-medizinische Anwendungen und Wirkungen von ionisierender Strahlung für unterschiedliche Adressaten auf (K2, K3, B3, B4),	ggf. Einsatz eines Films / eines Videos	Sinnvolle Beispiele sind die Nutzung von ionisierender Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle technische Anlagen.
(3 Ustd.)	begründen in einfachen Modellen wesentliche biologisch-medizinische Wirkungen von ionisierender Strahlung mit deren typischen physikalischen Eigenschaften (E6, UF4), erläutern das Vorkommen künstlicher und natürlicher Strahlung, ordnen deren Wirkung auf den Menschen mithilfe einfacher dosimetrischer Begriffe ein und bewerten Schutzmaßnahmen im Hinblick auf die Strahlenbelastungen des Menschen im Alltag (B1, K2).		Erläuterung von einfachen dosimetrischen Begriffe: Aktivität, Energiedosis, Äquivalentdosis
	bewerten Gefahren und Nutzen der Anwendung physikalischer Prozesse, u. a. von ionisierender Strahlung, auf der Basis medizinischer, gesellschaftlicher und wirtschaftlicher Gegebenheiten (B3, B4)		
26	bewerten Gefahren und Nutzen der Anwendung ionisierender Strahlung unter Abwägung unterschiedlicher Kriterien (B3, B4),		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
9 Ustd.	Summe		

Kontext: Forschung am CERN und DESY (HIGGS – Ups, ein Bier zu viel!)

Leitfrage: Was sind die kleinsten Bausteine der Materie? Inhaltliche Schwerpunkte: Standardmodell der Elementarteilchen Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kernbausteine und Elementarteilche n (4 Ustd.)	erläutern mithilfe des aktuellen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3, E6), erklären an einfachen Beispielen Teilchenumwandlungen im Standardmodell (UF1). recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2).	In diesem Bereich sind i. d. R. keine Realexperimente für Schulen möglich. Es z.B. kann auf Internetseiten des CERN und DESY zurückgegriffen werden.	Mögliche Schwerpunktsetzung: Paarerzeugung, Paarvernichtung,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
(Virtuelles) Photon als Austauschteilche n der elektromagnetisc hen Wechselwirkung	vergleichen in Grundprinzipien das Modell des Photons als Austauschteilchen für die elektromagnetische Wechselwirkung exemplarisch für fundamentale Wechselwirkungen mit dem Modell des Feldes (E6).	Lehrbuch, Animationen	Veranschaulichung der Austauschwechselwirkung mithilfe geeigneter mechanischer Modelle, auch Problematik dieser Modelle thematisieren
Konzept der Austausch- teilchen vs. Feldkonzept (2 Ustd.)			
6 Ustd.	Summe		1

Inhaltsfeld: Relativität von Raum und Zeit (GK)

Kontext: Navigationssysteme
Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?
Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Relativität der Zeit (5 Ustd.)	interpretieren das Michelson-Morley-Experiment als ein Indiz für die Konstanz der Lichtgeschwindigkeit (UF4), erklären anschaulich mit der Lichtuhr grundlegende Prinzipien der speziellen Relativitätstheorie und ermitteln quantitativ die Formel für die Zeitdilatation (E6, E7), erläutern qualitativ den Myonenzerfalls in der Erdatmosphäre als experimentellen Beleg für die von der Relativitätstheorie vorhergesagte Zeitdilatation (E5, UF1). erläutern die relativistische Längenkontraktion über eine Plausibilitätsbetrachtung (K3), begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten, dass eine additive Überlagerung von Geschwindigkeiten nur für "kleine" Geschwindigkeiten gilt (UF2), erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (UF1),	Experiment von Michelson und Morley (Computersimulation) Lichtuhr (Gedankenexperiment / Computersimulation) Myonenzerfall (Experimentepool der Universität Wuppertal)	Ausgangsproblem: Exaktheit der Positionsbestimmung mit Navigationssystemen Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson-Morley-Experiments Herleitung der Formel für die Zeitdilatation am Beispiel einer "bewegten Lichtuhr". Der Myonenzerfall in der Erdatmosphäre dient als experimentelle Bestätigung der Zeitdilatation. Betrachtet man das Bezugssystem der Myonen als ruhend, kann die Längenkontraktion der Atmosphäre plausibel gemacht werden. Die Formel für die Längenkontraktion wird angegeben.
5 Ustd.	Summe		

Kontext: Vertiefung Teilchenbeschleuniger
Leitfrage: Ist die Masse bewegter Teilchen konstant?
Inhaltliche Schwerpunkte: Veränderlichkeit der Masse, Energie-Masse Äquivalenz
Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
"Schnelle" Ladungsträger in E- und B- Feldern (2 Ustd.)	erläutern die Funktionsweise eines Zyklotrons und argumentieren zu den Grenzen einer Verwendung zur Beschleunigung von Ladungsträgern bei Berücksichtigung relativistischer Effekte (K4, UF4),	Zyklotron (in einer Simulation mit und ohne Massenveränderlichkeit)	E- und B-Feld wiederholen. Der Einfluss der Massenzunahme wird in der Simulation durch das "Aus-dem-Takt-Geraten" eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht.
Ruhemasse und dynamische Masse (4 Ustd.)	erläutern die Energie-Masse Äquivalenz (UF1). zeigen die Bedeutung der Beziehung <i>E=mc</i> ² für die Kernspaltung und -fusion auf (B1, B3)	Film / Video	Die Formeln für die dynamische Masse und <i>E=mc</i> ² werden als deduktiv herleitbar angegeben. Erzeugung und Vernichtung von Teilchen, Hier können Texte und Filme zu Hiroshima und Nagasaki eingesetzt werden.
6 Ustd.	Summe		•

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation, Veränderlichkeit der Masse, Energie-Masse Äquivalenz **Kompetenzschwerpunkte:** Schülerinnen und Schüler können

- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Gegenseitige Bedingung von Raum und Zeit (2 Ustd.)	diskutieren die Bedeutung von Schlüsselexperimenten bei physikalischen Paradigmenwechseln an Beispielen aus der Relativitätstheorie (B4, E7), beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3)	Lehrbuch, Film / Video	
2 Ustd.	Summe		